Blog

Overview of IntelliJ IDEA 2023

IntelliJ IDEA is designed to help developers like us stay in the flow while we’re working. Like all IDEs, it has a lot of functionality available, but it’s designed to get out of your way to let you focus on the code.

Take a look at this overview of IntelliJ IDEA.

Introduction

  • Find Action: ⌘ ⇧ A (on macOS) / Ctrl+Shift+A (on Windows/Linux)
  • Feature Trainer
  • Hide all windows: ⌘ ⇧ F12 (on macOS) / Shift+Command+F12 (on Windows/Linux)
  • Project tool window: ⌘1 (on macOS) / Alt+1 (on Windows/Linux)
  • Quick Switch Scheme: ^`(on macOS) / Ctrl+` (on Windows/Linux)
  • IDE viewing modes
  • Preferences: ⌘, (on macOS) / Ctrl+Alt+S (on Windows/Linux)

Coding assistance

  • Code completion
  • Complete Current Statement: ⌘ ⇧ ⏎ (on macOS) / Shift+Ctrl+Enter (on Windows/Linux)
  • Show Context Actions: ⌥ ⏎ (on macOS) / Alt+Enter (on Windows/Linux)
  • Intention actions
  • Navigate to next highlighted error: F2
  • Navigate to previous highlighted error: Shift F2
  • Generate code: ⌘ N (on macOS) / Alt + Insert (on Windows/Linux)
  • Live templates

Refactoring

  • Rename: Shift F6
  • Extend selection: ⌥ Up (on macOS) / Ctrl+W (on Windows/Linux)
  • Extract variable: ⌘ ⌥ V on macOS) / Ctrl+Alt+V (on Windows/Linux)
  • Postfix completion
  • Reformat code: ⌘ ⌥ L (on macOS) / Ctrl+Alt+L (on Windows/Linux)
  • Move statement up: ⇧⌘ Up (on macOS) / Ctrl+Shift+Up (on Windows/Linux)
  • Surround with: ⌘ ⌥ T (on macOS) / Ctrl+Alt+T (on Windows/Linux)
  • SmartType Completion: ^ ⇧ Space  (on macOS) / Shift+Ctrl+Space (on Windows/Linux)
  • Inline: ⌘ ⌥ N (on macOS) / Ctrl+Alt+N (on Windows/Linux)
  • Extract method: ⌘ ⌥ M on macOS) / Ctrl+Alt+M (on Windows/Linux)

Testing & Debugging

Navigation

  • Navigate backwards: ⌘ [ (on macOS) / Ctrl+Alt+Left (on Windows/Linux)
  • Navigate forwards: ⌘ ] (on macOS) / Ctrl+Alt+Right (on Windows/Linux)
  • Find usages / declaration: ⌘ B (on macOS) / Ctrl+B (on Windows/Linux)
  • Recent Files: ⌘E (on macOS) / Ctrl+E (on Windows/Linux)
  • Recent locations: ⇧⌘E (on macOS) / Ctrl+Shift+E (on Windows/Linux)
  • Search everywhere: ⇧⇧ (on macOS) / Shift Shift (on Windows/Linux)
  • Find in files: ⇧⌘F (on macOS) / Ctrl+Shift+F (on Windows/Linux)

Reading Code

  • Folding -> Expand: ⌘ + (on macOS) / Ctrl+ + (on Windows/Linux)
  • Folding -> Collapse: ⌘ – (on macOS) / Ctrl+ – (on Windows/Linux)
  • Folding -> Expand All : ⇧ ⌘ + (on macOS) / Ctrl+Shift+ + (on Windows/Linux)
  • Folding -> Collapse All: ⇧ ⌘ + (on macOS) / Ctrl+Shift+ – (on Windows/Linux)
  • File Structure: ⌘ F12 (macOS) / Ctrl+F12 (Windows/Linux) – Twice to expand list
  • Quick documentation: F1 (macOS) / Ctrl+Q (Windows/Linux)
  • Toggle Rendered View:  ^ ⌥ Q (macOS) / Ctrl+Alt+Q (Windows/Linux)

Version Control support (Git)

  • Commit: ⌘ 0 (macOS) / Alt+0 (Windows/Linux)
  • Jump to last tool window: F12
  • Show diff: ⌘ D (macOS) / Ctrl+D (Windows/Linux)
  • Commit Anyway and Push: ⌥ ⌘ K (on macOS) / Ctrl+Alt+K (on Windows/Linux)
  • Git tool window: ⌘9 (on macOS) / Alt+9 (on Windows/Linux)
  • Terminal: ⌥ F12 (on macOS) / Alt+F12 (on Windows/Linux)
  • Git integration

Language and technology support

Integrated tools support

Contributing to open source software; creating a pull request

In this tutorial, we are going to take a look at contributing to Open Source Software, specifically how to do a pull request (PR). We will look at forking and cloning the project, making the changes, committing and pushing these changes, creating the pull request, the review and hopefully merge of your PR. The same process may apply when making contributions to a project at work that you don’t own. In this example, the project is on GitHub. Other Git code repositories may use a similar process.

There are many reasons to contribute to open source projects, and different ways to find an issue to work on, from fixing a bug that is bothering you, to simply wanting to help out, or even just to gain more experience and learn something new. If you’re fixing something that is currently bothering you, you will have a specific issue and project to work on. If not, you could consider contributing to a project you like to use, or finding an issue that is suitable for someone new to contributing to open source and/or the project. There are also many different things you can contribute. Code is one, but projects also need testing and other things. For more information on what you can contribute and how to find something to contribute, please have a look at this video.

For this blog post, let’s assume we’ve found a project we want to work on, and an issue we want to fix.

Getting the project

When making your first contribution, you won’t have access to push to the open source project directly. So, the first thing we will need to do is fork this project to our own profile. This means we create a copy of the original project on our profile.

Fork project

Fork

We then need to clone this project to our local machine. We see that we have several options to get the code. Let’s use HTTPS as that can be the simplest option. When we click the clipboard icon, the URL will be copied to our clipboard.

Clone

Copied

When we open IntelliJ IDEA and don’t already have a project open, we’ll see the Welcome screen. Here we have the option to Get from VCS (version control system).

Welcome screen

When we click the button, the Get from Version Control dialog opens. We can paste the URL we just copied. We can select where we want to store this project on our computer; let’s stick with the default. When we select Clone, IntelliJ IDEA will clone the GitHub repository to the selected directory.

Clone project

If we already have a project open, we can open the Get from Version Control dialog by going to File > New > Project from version control.

New Project from version control menu

IntelliJ IDEA will open the project on our machine.

Making and committing our changes

Before making any changes, we’ll want to make sure that we can build the project. Hopefully, how to build the project will be described in the README, as it is for this example. Let’s open the terminal and build the project as described. In this example, we need Docker, which is already installed and running.

Build the project

Now that we know we can build the project, we can start making changes. First, we need to look for the right place to make the change. We might navigate the project in the Project tool window (⌘1 on macOS, or Alt+1 on Windows/Linux), or look for a specific file or code snippet using Find in Files (⌘⇧F on macOS, or Ctrl+Shift+F on Windows/Linux).

Project tool window

Find in files

We might want to create a specific branch for our changes.

Once we are done making our changes and the project still builds, we can commit our changes (⌘K on macOS, or Ctrl+K on Windows/Linux). We can check our changes in the Commit tool window (⌘1 on macOS, or Alt+1 on Windows/Linux) to see if these are the right files and use Show Diff (⌘D on macOS, or Ctrl+D on Windows/Linux) to see if the changes are correct.

Commit changes

Check the differences

If we don’t have access to the original project, we need to push our code to our fork.

Push

Creating the pull request

Once we are happy with our changes, we can create a pull request.

We go back to our GitHub profile and create a pull request from there. After we have pushed our changes, we can see that our fork is 1 commit ahead. We can start creating our pull request by clicking Contribute.

Contribute

We need to provide a title and description for our pull request. Make sure the title is a good description of the changes you want to contribute. If your PR fixes an issue, you can add “fixed #x” (where x is the issue number) to the title; this will automatically close the linked issue when the PR is merged. Once you are happy with the title and description, click the button Create pull request to open your pull request.

Open the pull request

Create pull request

Negotiating the review process

Now the waiting starts. On an active project, hopefully your PR will be reviewed soon. Your PR might get comments from reviewers that you need to fix. For complex changes, this might take several iterations. For smaller changes, hopefully it won’t. Before doing a lot of work on an issue you might want to check that your contribution is wanted and your solution is what they are looking for. Don’t be discouraged by review comments. Keep in mind that the maintainers will have to maintain your solution in the future and they want to make sure that it fits their project.

As you can see, reviewers can comment on your PR, approve the PR or request changes which must be addressed before merging. A project might have other checks set up that need to pass before merging. You might want to check that these checks pass and that there are no conflicts with the main branch.

Review

Checks

Summary and shortcuts

In this blog post, we’ve seen how to do an open source pull request. For more information on what you can contribute and how to find something to contribute, please have a look at this video.

IntelliJ IDEA Shortcuts Used

Here are the IntelliJ IDEA shortcuts that we used.

Name macOS Shortcut Windows / Linux Shortcut
Open / Close Project Tool Window ⌘1 Alt+1
Find in Files ⌘⇧F Ctrl+Shift+F
Commit changes ⌘K Ctrl+K
Commit tool window ⌘1 Alt+1
Show diff ⌘D Ctrl+D

Related Links

Contributing to open source software: Creating a pull request

In this screencast, we’re going to take a look at Contributing to Open Source Software, specifically how to create a pull request.

Links

public static void main 🎶

On June 23, 2023 Hanno Embregts and I performed a lightning talk / pop music quiz called “public static void main 🎶 “. This was based on a Tweet that said “I realized that you can sing “public static void main” like “Everybody dance now” and I can’t stop doing it”. Hanno found 15(!!) songs that would also work, and we created a pop music quiz.

On June 23, 2023 Hanno Embregts and I performed a lightning talk / pop music quiz called “public static void main 🎶 “.

Hanno and I met at Joy of Coding 2022, where he gave his talk “What “Stairway to Heaven” Can Teach Us About Software Development“. In this talk, he plays parts of the song on stage with his travel guitar, and then explains how the lyrics are about software development.

How it started

A few weeks later, I saw a tweet that said “I realized that you can sing “public static void main” like “Everybody dance now” and I can’t stop doing it”. (And, I’ve been doing just that ever since.) Someone responded to my retweet by pointing out that this also works for Vamos a la playa.

I love it when a plan comes together

So I pitched the idea to Hanno of doing a “pop music quiz” with different songs where we would replace the lyrics with “public static void main” and we could have the audience guess what the original song was. A few months later, Hanno contacted me to say he had found at least 15(!!) songs where this would work. Apparently, he had gone through the Top 2000 looking for songs he thought might work. So we got together to discuss this idea, write an abstract and figure out where to submit it too. We submitted to several conferences that offered lightning talks slots and … got accepted to Joy of Coding 2023! Coincidentally, this is also where I got started speaking, so I was very excited to return.

Time constraints

Unfortunately, we had to cut some songs due to the 5-minute limit, so we selected the 6 we thought would work best. We selected a quiz tool, created the questions, and some videos to go with them using IntelliJ IDEA‘s live templates.
The Joy of Coding organizers were extremely helpful in allowing us to take the last slot in the lightning talk line-up, letting us use our own laptop to run the quiz, and talking to the venue to get Hanno an audio monitor at the last minute.

Joy of Coding 2023

On the day of the conference, we had a lot of fun playing and singing along.

And to our surprise, we ended up with a tie for first place! Fortunately, we had some back-up songs we could use to settle this tie in a kind of “sudden death” match between the two top contestants.

We also got some positive feedback from the crowd, as well as an invitation to perform again elsewhere.

Thanks

Many thanks to original tweeters for the idea (I’ll forgive you for also getting the song stuck in my head), Hanno Embregts for the awesome collaboration, Yosuf Haydary for pictures and videos of the event and Joy of Coding for having us!

How I got started with public speaking

As a public speaker, one of the questions that comes up occasionally is “How did you get into public speaking?”. In my case another speaker and conference organizer convinced me to submit a lightning talk to their conference, which got accepted. it was both scary and exciting, but fun enough to keep doing it!

As a public speaker, one of the questions that comes up occasionally is “How did you get into public speaking?”. Everybody has their own personal story; this is mine.

Attending conferences

In my 20+ years in IT, I’d never had a job where it was normal for me to go to conferences. This changed when I joined bol.com, an online retail platform, in 2017. At bol.com, going to  conferences was very common. As it turns out, I really loved going to conferences.

Some of the things I particularly enjoy are hearing about new technologies I might not yet be aware of, or new and different perspectives on technologies I already know. Also, I’m interested in hearing stories about challenges people face in other companies and industries, and how they solve their problems (either with or without specific tools). My favorite conferences are the ones where I come back with a bunch of ideas of new things to try. In addition, I very much enjoyed meeting people and discussing our thoughts on software development in the so-called “hallway track”; the conversations that happen in the hallway in between talks. While talks can often be watched online after a conference, meeting new people and having conversations with them only happens in person.

Meeting other speakers

To expose myself to more ideas, I created a Twitter account and started following speakers I liked and people I met at conferences. One of those people was Peter Hilton, whose talk I saw speak at CodeMotion Amsterdam 2017 and later met at Joy of Coding in 2017.

Peter was the one who convinced me to submit a lightning talk to Joy of Coding in 2018. He told me that as it was only 5 minutes, if I really didn’t like it, at least it would be over quickly. Of course, what he didn’t tell me is that it could be worse: I could end up liking it and wanting to do it again! Also, it wasn’t until I was accepted to do a 5-minute lightning talk that people told me that short lightning talks are actually harder than regular, longer talks. If you only have 5 minutes to get your point across, you have to be really clear about what that point is!

Picking a topic for my first talk

For my very first talk, I chose a topic I was very enthusiastic about and actively using at the time: Cucumber & BDD. I had started using Cucumber the year before and even started making open source contributions to the Cucumber documentation as well as cucumber-jvm (the Java implementation of Cucumber). My team at the time was using Cucumber to describe the intended behavior of our applications, and these automated tests helped safeguard this behavior by making sure we didn’t break it when making changes and adding new features. Being an active user and contributor, I had way more to say about this topic than I could fit into 5 minutes, so I had to bring it down to several core points I wanted to make. 

Practice makes perfect

Since it was imperative that I keep it under 5 minutes (I was told that the microphone would be cut after 5 minutes; no pressure!), I practiced my talk. A lot. The way I did this was by setting a 5-minute timer on my phone, and practicing my talk in the mirror. Every time I went over the 5 minutes, I would think about what went wrong. Often, it would be a tangent I went on that would take too long, so I would try to cut that and try again. Eventually I managed to whittle it down to 5 minutes and focus on the core idea(s) I wanted to get across.

Conference day!

On the day of the conference, I was extremely nervous but also excited. It was pretty exciting to see my name on a speaker badge!

Joy of Coding 2018 conference badge with my name and the text "I'm a speaker - ask me anaything!"
First speaker badge with my name on it!

There were several people doing lightning talks and the organizers had been kind enough to let me go on first, so I didn’t have to continue to get more nervous while waiting for my turn. Standing on stage for the first time was weird; it can be hard to know if the audience likes your talk if they just sit there quietly.

Fortunately I managed to get my story out within the 5-minute limit, and then I got to sit and watch the rest of the lightning talks. I’ll admit I didn’t really process a lot of them as I was feeling like a deflated balloon after my talk; or at least that’s how I describe the feeling of coming down off the adrenaline after a talk. To be honest, I still feel that way after talks these days, despite having way more of them now. It is not as bad as the first time, but I still get nervous before each talk and still need a bit of time to recover after. And yet, I still continue to do it!

Upsides of public speaking

This is how I got into public speaking. It started with a lightning talk on a topic I was enthusiastic about, and based on personal experience. It’s lead me to speak at many other conferences, share my knowledge and experience, meet many more amazing people and learn from them. And speaking is now part of my job as a Developer Advocate at JetBrains!

Analyzing dependencies in IntelliJ IDEA

If you’re working on a real world project, you’re probably using external dependencies. You might need to analyze which dependencies your application uses. For example, you may want to find out how a particular version of a dependency ended up in your application. Let’s take a look at how IntelliJ IDEA can help you to analyze dependencies.

Using the Dependency Analyzer

We can view our dependencies in the Maven or Gradle tool window. Here, we can expand dependencies to show their transitive dependencies, or collapse them again.

Open the Dependency Analyzer

We can open the Dependency Analyzer from the Maven or Gradle tool window by clicking the Analyze Dependencies… button. This will open the Dependency Analyzer showing the Resolved Dependencies on the left and their Usages on the right.

Alternatively, we can right-click a dependency in the Maven or Gradle tool window and select Analyze Dependencies from the context menu. This will open the Dependency Analyzer with the dependency selected.

We can hide all tool windows (⇧⌘F12 on macOS / Control+Shift+F12 on Windows/Linux), so we can focus on the dependencies.

Viewing dependencies in the Dependency Analyzer

We can view the dependencies as a tree by clicking the Show as Tree button and Expand or Collapse them as needed by pressing the corresponding buttons.

We can also click the View Options button and toggle Show GroupId, to show the GroupId for dependencies or not.

Finding a specific dependency

To see where we are getting a specific version of a particular library, we can search for that dependency. For example, when we search for “log4j” we see that we are only getting it via this spring-boot-starter, and it’s a version newer than the one where log4shell was fixed.

Finding conflicts

We might only want to look at dependencies that have conflicts. When we select the Show Conflicts Only button, we see only dependencies that have conflicts. In this example, we see that there is a conflict with the checker framework dependency. Fortunately, it’s been resolved; we see that one version is greyed out. If we go back to the Maven tool window, we see that this version has been omitted for conflict. We can see that the version we are using is 3.5.0 which we get from postgres.

Selecting scopes

We can also select a scope (for example, if we want to look at our test dependencies or exclude them from analysis). Since we’ve opened the Dependency Analyzer from the Maven tool window, we see the Maven scopes.

When we open the Dependency Analyzer from the Gradle tool window, the list of scopes will contain Gradle scopes.

More context

For more context, we can click a specific dependency and select Open Maven Config to open its pom.xml or Go to Maven Dependency to open the location in the pom.xml where this dependency is declared.

Using the Dependency Diagram

If you are using IntelliJ IDEA Ultimate, you can also view your dependencies as a diagram.

Show Diagrams

We can open diagrams either by right-clicking the project in the Project tool window and selecting Diagrams | Show Diagrams, or by using the shortcut ⌥ ⇧ ⌘ U (on macOS) or Ctrl+Alt+Shift+U (on Windows/Linux). You’ll notice this gives you several diagram options to choose from. In this case, we’re interested in the Gradle Dependencies, so we select that one. We can hide all tool windows (⇧⌘F12 on macOS / Control+Shift+F12 on Windows/Linux), so we can focus on the diagram.

Zoom in

If the project we’re looking at pulls in a lot of transitive dependencies, like this example, the diagram can be quite large. We can zoom in and out using the + and – keys, or the + and – buttons in the diagram window.

Finding a specific dependency

To look for a specific dependency and see where we get it from, we can search for this dependency using ⌘F (on macOS) or Ctrl+F (on Windows/Linux) to find it in the diagram. Using the button Show Paths: Root -> Selection, we can check the path for this dependency and click related dependencies to follow the path to the root.

Focus on related nodes

We have other options to look into specific dependencies. For example, we can zoom in on a specific dependency and the related nodes. Right-click the dependency you’re interested in, and from the context menu, select Analyze graph > Focus on Node Neighbourhood. This will give you several options. In this example, we’ll look at both directions. When we are done, we can reopen Analyze graph context menu and select Drop focus.

Select scopes

We can change the visibility level, by clicking the Change Visibility Level button for example if we want to focus on compile or runtime dependencies only.

Summary and Shortcuts

Now we know several ways to analyze our project’s dependencies in IntelliJ IDEA.

IntelliJ IDEA Shortcuts Used

Here are the IntelliJ IDEA shortcuts that we used.

NamemacOS ShortcutWindows / Linux Shortcut
Recent Files⌘ECtrl+E
Hide all windows / Restore windows⇧⌘F12Ctrl+Shift+F12
Open / Close Project Tool Window⌘1Alt+1
Show Diagram⌥⇧⌘UCtrl+Alt+Shift+U
Zoom in (in the diagram)++
Zoom out (in the diagram)
Find Elements in Diagram⌘FCtrl+F
Context Actions⌥⏎Alt+Enter

Related Links

IntelliJ IDEA: Analyzing Dependencies

If you’re working on a real world project, you’re probably using external dependencies. You might need to analyze which dependencies your application uses. For example, you may want to find out how a particular version of a dependency ended up in your application. Let’s take a look at how IntelliJ IDEA can help you to analyze dependencies.

Links

Cherry-pick: Move a commit to a different branch

There are several reasons why you might want to move a commit to a different branch. Let’s take a look at some of them.

Committed to the wrong branch

You’re working on a new feature, but an urgent bug came in. You fixed the bug and committed the fix, but oops… you forgot to create a new branch for the bugfix! Now this bugfix is on the wrong branch. How do we fix this?

IntelliJ IDEA Git log window showing a bugfix commit on a new-feature branch
Bugfix commit is on the wrong branch

Use cherry-pick to move the commit

I could redo the work, especially if it’s a small change, but … I don’t want to! Luckily, there is a better way.

We only want to move this one commit from the feature branch to a separate bugfix branch. We can do this using Git’s “cherry pick” option from IntelliJ IDEA.

First, let’s go back to main and create the bugfix branch that we should have created in the first place.

IntelliJ IDEA Git log window showing that the main branch is checked out.
Back on the main branch

Once we’re back on the main branch, we can create a new branch named “bugfix”.

Create a new Bugfix branch

On the newly created branch, we can select the bugfix commit from the other branch and select Cherry-Pick to apply that commit to our current branch.

IntelliJ IDEA Git log with the bugfix commit selected and the context menu with option cherry-pick selected.
Cherry Pick the selected commit from the context menu

Cherry-pick from the command line

Yes, we can do this from the command line too, but there’s no cute cherry icon on the command line. To cherry-pick a commit from the command line, we can use the command git cherry-pick <commit hash>. We would need to find the commit hash of the commit we want to cherry-pick, which we can find for example in the Commit Details pane in the Git log window (see below).

IntelliJ IDEA with the terminal open and the command "git cherry-pick 51e33e5a".
Cherry-pick on the command line

As we can see, the bugfix commit is now on the bugfix branch.

IntelliJ IDEA Git log showing the Bugfix commit on the bugfix branch and a message "Cherry-pick successful".
Cherry-pick successful

Other use cases for cherry-picking

Cherry picking can be useful in other situations too. Let’s take a look at some other use cases for cherry-picking.

Backporting a fix

We can also use cherry-picking to backport a fix to a previous release branch. For example, let’s move our bugfix commit also to the v1-release.

To do so, first we need to look for the last release (v1). We can search for a specific commit hash, branch or tag name in the Git log (⌘ F on Mac or Ctrl+F on Windows/Linux).

IntelliJ IDEA Git log showing a pop-up to Enter hash or branch/tag name.
Search Git log for Hash/Branch/Tag

We can also filter commits in the commit log by branch, user, date or path. 

IntelliJ IDEA Git log showing the option to filter by branch, user, date or path
Filter by branch, user, date or path

To see which commits have not yet been applied to this branch, we can click View Options and select Highlight | Not Cherry-Picked Commits. We’ll compare with the new-feature branch. Commits that have already been applied to the current branch are greyed out.

IntelliJ IDEA Git log showing a context menu with Highlights | Not Cherry-Picked Commits selected
Select the Not Cherry-Picked Commits

When we select a commit, we can look at the information in the Commit Details area (at the bottom right) to make sure these are the changes we want to transfer to this branch. In the Commit Details area we can see which files were changed in a particular commit. We can right-click a file and select Show Diff from the context menu to open the changes that were made to that file.

IntelliJ IDEA Git log showing the details of a commit on the right.
Look at the details of a commit

If we are sure these are the changes we want, we can cherry-pick them to the previous release branch.

Cherry pick part of a commit

In the Commit details pane on the right, select the files containing the changes you want to apply to the target branch, right-click and select Cherry-Pick Selected Changes from the context menu.

IntelliJ IDEA Git log showing a context-menu with the option Cherry-Pick Selected Changes selected
Cherry-Pick Selected Changes

The cherry picked changes are transferred to the change list and we can commit them from there. 

IntelliJ IDEA Commit window with Changes selected to be committed.
Partial commit added to the Change List to be committed

Dealing with conflicts

So far, cherry picking went smoothly because there are no conflicting changes. What if there are conflicts?!

When we cherry-pick a commit that has conflicts with our current branch, the Merge Conflicts dialog opens.

IntelliJ IDEA Merge Conflict dialog with the options to Accept Yours, Accept Theirs or Merge
Merge Conflict

We can resolve the merge conflicts here. We want to keep some changes, and reject others.

IntelliJ IDEA Merge Conflict dialog with conflicts highlighted
Merge Conflicts dialog
IntelliJ IDEA Merge Conflict dialog with conflicts resolved and the option to Save changes and finish merging
Merge conflicts have been resolved

If you’re not able to resolve the merge conflicts, you can also abort the cherry pick.

IntelliJ IDEA Git log showing a notification that the Cherry-pick was performed with conflicts and a popup to Abort the Cherry-Pick
Abort Cherry-pick

Continue after cherry-picking

Once we’re done cherry-picking, we can go back to the “feature” branch. Since we haven’t pushed these changes yet, we can remove the commit from the feature branch by selecting Drop commit

IntelliJ IDEA Git log with a commit selected and a context-menu with the option to Drop Commit
Drop Commit

What if you have pushed the changes already? Then you might want to revert it on this branch instead. Right-click the commit and from the context menu select Revert Commit.

IntelliJ IDEA Git log with a commit selected and a context-menu with the option to Revert Commit
Revert Commit

Now we can continue working on the new feature!

Conclusion

Moving a commit to a different branch. Not nearly as scary as it sounds! Let the IDE help to turn this into a quick, low-stress task.

Cherry pick a commit to a different branch in any JetBrains IDE

Links

Cherry pick a commit to a different branch

Oops, you committed your code to the wrong branch… You could redo the work, but you don’t want to! Luckily, the IDE can help you move your commit to a different branch. Use Git’s cherry-pick option from your IDE to move changes over to a different branch in a quick, low-stress way.

Cherry pick a commit to a different branch

Links

The Art of Cherry Picking

Oops, you committed your code to the wrong branch… You could redo the work, but you don’t want to! Luckily, the IDE can help you move your commit to a different branch. Use Git’s cherry-pick option from your IDE to move changes over to a different branch in a quick, low-stress way.

The Art of Cherry Picking

Links